Содержание


По всем вопросам обращаться к Владимиру Дубовику

КЛАССНЫЕ ЖУРНАЛЫ

Физика в школе

WoWeb.ru - портал для веб-мастера

Элементы математической логики
Алгебра логики. История логики



Алгебра — раздел математики, исследующий операции, аналогичные сложению, умножению, вычитанию и делению и выполняемые не только над числами, но и над другими математическими объектами, например, многочленами, векторами, матрицами, операторами и т.д., над объектами самой различной природы.
Возникла алгебра в связи с поисками общих приемов решения однотипных арифметических задач. В основе найденных алгеброй общих приемов лежат действия над величинами (составление и решение уравнений), выраженных буквами, независимо от их конкретного числового значения. Введение символики имело исключительно важное значение и явилось огромным шагом вперед в развитии математики, так как введение буквенных обозначений сделало запись сжатой и удобной для построения исчислений. Применение буквенных обозначений облегчило и исследование общих свойств числовых систем и общих методов решения задач при помощи уравнений.
Логика (греческое logos — слово, мысль, речь, разум) — совокупность наук о законах и формах мышления.
Как грамматика изучает формы отдельного слова и формы сочетания слов в предложении, отвлекаясь от конкретного содержания языковых выражений; как математика рассматривает количественные и пространственные отношения и формы, отвлекаясь от конкретных материальных предметов, так и формальная логика исследует формы отдельных мыслей и формы сочетаний их в отвлечении от конкретного содержания суждений, умозаключений, доказательств и понятий. Составной частью формальной логики является математическая логика.
Зародилась логика в лоне единой нерасчлененной науки — античной философии, которая тогда объединяла всю совокупность знаний о мире и о самом человеке и его мышлении. В IV в. до н. э. логика начинает развиваться под влиянием возросшего интереса к ораторскому искусству. Это характерно не только для Древней Греции, но и для Древней Индии, Древнего Китая, Древнего Рима и феодальной России. Как известно, в первом сочинении Аристотеля (384 — 322 до н. э.) по логике проблемы логики рассматривались в связи с теорией ораторского искусства. Первый русский фундаментальный труд по логике, написанный М.В. Ломоносовым (1711 — 1765), называется «Краткое руководство к красноречию». Основы математической логики заложил немецкий ученый и философ Готфрид Вильгельм Лейбниц (1646 — 1716). Он сделал попытку построить первые логические исчисления, считал, что можно заменить простые рассуждения действиями со знаками и привел соответствующие правила. Но Лейбниц высказал только идею, а развил ее окончательно англичанин Джордж Буль (1815 — 1864). Буль считается основоположником математической логики как самостоятельной дисциплины. В его работах логика обрела свой алфавит, свою орфографию и грамматику. Недаром начальный раздел математической логики называют алгеброй логики, или булевой алгеброй.
Алгебра логики (логика высказываний) — один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях высказываний.

Высказывания
Высказывание — это термин математической логики, которым обозначается предложение какого-либо языка (естественного или искусственного), рассматриваемого лишь в связи с его истинностью. Например:
«Земля — планета солнечной системы.» ..........................Истина
«2+8<5»........................................................................................ Ложь
«Всякий квадрат есть параллелограмм.»......................... Истина
«Каждый параллелограмм есть квадрат.» .......................Ложь
Приведем примеры, предложений не являющихся высказываниями:
«Посмотрите в окно.»
«Который час?»
«2x+7>12»
Еще раз подчеркнем, что отличительным признаком любого высказывания является его свойство быть истинным или ложным, а этим свойством три вышеприведенных предложения не обладают.
Используя простые высказывания, можно образовывать сложные, или составные, высказывания, в которые простые входят в качестве элементарных составляющих. В образовании сложных высказываний используются слова: и, или, тогда и только тогда, когда (в том и только в том случае), если …, то …, нет. Рассмотрим несколько примеров сложных высказываний. Рассмотрим несколько примеров сложных высказываний:
«Если идет дождь, то солнце не светит.»
« Если ветер дует, то нет дождя.»
Основная задача логики высказываний заключается в том, чтобы на основании истинности или ложности простых высказываний определить истинность или ложность сложных высказываний.

Таблицы истинности. Логические функции. Основные логические операции

Условимся, простые высказывания называть логическими переменными и обозначать большими буквами и, если высказывание истинно, будем писать A=1, а если ложно, то A=0.
Использование 0 и 1 подчеркивает некоторое соответствие между значениями логических переменных и функций в алгебре логики и цифрами в двоичной системе счисления. Это позволяет описывать работу логических схем ЭВМ и проводить их анализ и синтез с помощью математического аппарата алгебры логики.

Любое устройство ЭВМ, выполняющее действия над двоичными числами, можно рассмотреть как некоторый функциональный преобразователь. Причем числа на
входе — значения входных логических переменных, а число на выходе — значение логической функции, которое получено в результате выполнения определенных операций. Таким образом, этот преобразователь реализует некоторую логическую функцию.
Значения логической функции для разных сочетаний значений входных
переменных — или, как это иначе называют, наборов входных переменных — обычно задаются специальной таблицей. Такая таблица называется таблицей истинности. Количество наборов входных переменных (Q) можно определить по формуле:
Q=2^n, где n — количество входных переменных.

Продолжение следует........

Hosted by uCoz